Hurricane Katrina

INFORMATION CYCLE
Information Cycle

First Hours

Within a year +

Within 24 Hours

Within months +

Within a week to a month
Information Cycle

First Hours

Within 24 Hours

Within a week to a month

Within a year +

Within months +

MEDIA
- Internet

Within a week to a month
Information Cycle

Within First Hours

Within 24 Hours

Within a Week to a Month

Within Months +

Within a Year +

MEDIA

• Internet
• Radio and Television
Information Cycle

First Hours

Within 24 Hours

Within a week

Within months +

Within a year +

Information Cycle

MEDIA

• Internet
• Radio and Television
• Social Media
Information Cycle

- First Hours
- Within a year +
- Within months +
- Within a week to a month
- Within 24 Hours
Information Cycle

First Hours

Within a week to a month

Within a year +

newspapers

Within 24 Hours

Within months +

Within a week to a month
Information Cycle

First Hours

Within 24 Hours

Within a week to a month

Within months +

newspapers

CATASTROPHIC

STORM SURGE SWAMPS 9TH WARD, ST. BERNARD
LAKEVIEW LEVEE BREACH THREATENS TO INUNDATE CITY

KATRINA: THE STORM WE'VE ALWAYS FEARED

The Times-Picayune

THE TIMES-PICAYUNE
Information Cycle

First Hours
Within 24 Hours
Within a week
Within months +
Within a year +

newspapers
Information Cycle

- First Hours
- Within 24 Hours
- Within a week to a month
- Within a year +
- Within months +
- Within a month
Information Cycle

First Hours

Within a year +

Within months +

Within a week to a month

Within 24 Hours

Popular Magazines
Information Cycle

- First Hours
- Within 24 Hours
- Within a week to a month
- Within months +
- Within a year +

Popular Magazines
Information Cycle

First Hours

Within a week to a month

Within a year +

Within months +

Popular Magazines

Within a month

Within Hours

TIME
SPECIAL REPORT

'PRAY FOR US'
HORROR IN NEW ORLEANS: THE RELIEF FIASCO
AFTER KATRINA

Newsweek

Katrina

Why It Became a Man-made Disaster Where It Could Happen Next

NATIONAL GEOGRAPHIC

SPECIAL EDITION

New Orleans, September 2, 2005
Information Cycle

First Hours

Within 24 Hours

Within a year +

Within months +

Within a week to a month
Information Cycle

First Hours

Within a week to a month

Within months +

Within 24 Hours

Within a year +

Within a week to a month

Journals
Information Cycle

First Hours

Within a year +

Within months +

Within a week

Within 24 Hours

Scholarly Journals

Applications of Radarsat-1 synthetic aperture radar imagery to assess hurricane-related flooding of coastal Louisiana

LAWRENCE M. KIAE††, NAN D. WALKER‡, SHREEKANTH BALASUBRAMANIAN†, ADELE BABIN† and JOHN BARRAS†
†Coastal Studies Institute Earth Scan Laboratory, Louisiana State University, Howel/Russell Geoscience Complex, Baton Rouge, LA 70803, USA
‡Department of Geography and Anthropology, Louisiana State University, Howel/Russell Geoscience Complex, Baton Rouge, LA 70803, USA
§Department of Oceanography and Coastal Sciences, Howel/Russell Geoscience Complex, Baton Rouge, LA 70803, USA
∥United States Department of Interior, United States Geological Survey, Baton Rouge, LA 70804, USA

(Received 24 October 2005; in final form 26 October 2005)

The Louisiana coast is subjected to hurricane impacts including flooding of human settlements, river channels and coastal marshes, and salt water intrusion. Information on the extent of flooding is often required quickly for emergency relief, repairs of infrastructure, and production of flood risk maps. This study investigates the feasibility of using Radarsat-1 SAR imagery to detect flooded areas in coastal Louisiana after Hurricane Katrina, October 2002. Arithmetic differencing and multi-temporal enhancement techniques were employed to detect flooding and to investigate relationships between backscatter and water level changes. Strong positive correlations ($R^2 = 0.7 - 0.94$) were observed between water level and SAR backscatter within marsh areas proximate to Atchafalaya Bay. Although variations in elevation and vegetation type did influence and complicate the radar signature at individual sites, multi-date differences in backscatter largely reflected the patterns of flooding within large marsh areas. Preliminary analyses show that SAR imagery was not useful in mapping urban flooding in New Orleans after Hurricane Katrina’s landfall on 29 August 2005.

1. Introduction
Information Cycle

First Hours

Within a year +

Journals

Within months +

International Journal of Remote Sensing

Applications of Radarsat-1 synthetic aperture radar imagery to assess hurricane-related flooding of coastal Louisiana

LAWRENCE M. KIAGE†, NANN D. WALKER†, SHREEKANT BALASUBRAMANIAN†, ADELE BABIN† and JOHN BARRAS†
†Coastal Studies Institute Earth Scan Laboratory, Louisiana State University, Howe/ Russell Geoscience Complex, Baton Rouge, LA 70803, USA
†Department of Geography and Anthropology, Louisiana State University, Howe/ Russell Geoscience Complex, Baton Rouge, LA 70803, USA
†Department of Oceanography and Coastal Sciences, Howe/Russell Geoscience Complex, Baton Rouge, LA 70803, USA
†United States Department of Interior, United States Geological Survey, Baton Rouge, LA 70804, USA

(Received 24 October 2005; in final form 25 October 2005)

The Louisiana coast is subjected to hurricane impacts including flooding of human settlements, river channels and coastal marshes, and salt water intrusion. Information on the extent of flooding is often required quickly for emergency relief, repairs of infrastructure, and production of flood risk maps. This study

NATURE Vol. 438, 22/29 December 2005

BRIEF COMMUNICATIONS ARISING

METEOROLOGY

Are there trends in hurricane destruction?

Since the record impact of Hurricane Katrina, attention has focused on understanding trends in hurricanes and their destructive potential. Emanuel reports a marked increase in the potential destructiveness of hurricanes based on identification of a trend in an accumulated annual index of power dissipation in the North Atlantic and western North Pacific since the 1970s. If hurricanes are indeed becoming more destructive over time, then this trend should manifest itself in more destruction. However, my analysis of a long-term data set of hurricane losses in the United States shows no upward trend once the data are normalized to remove the effects of societal changes.

Historical hurricane losses can be adjusted to a base year’s values through adjustments related to inflation, population and wealth. events per year) of $93.3 billion, and an average peak-storm loss in 1951–2004 for 46 storms (0.85 events per year) of $7.0 billion; this difference is not statistically significant. Adding Hurricane Katrina to this data set, even at the largest loss figures currently suggested, would not alter the interpretation of these results.

These loss data indicate two possibilities with respect to Emanuel’s analysis: if the power-dissipation index metric is an accurate indicator of hurricane destructiveness, then the trend identified by Emanuel could be an artifact of the data and/or methods; alternatively, the trend he identifies is an accurate reflection of trends in the real-world characteristics of storms, but the power-dissipation index is a weak indicator of hurricane destructiveness — which would call for the identification of other indicators.
Information Cycle

Original Article

Hurricanes Katrina and Rita: Evacuee Healthcare Efforts Remote from Hurricane Affected Areas

Philip A. Rozeman, MD, FACE, FASLM, and Edward J. Mayeaux, Jr., MD, DABFP, FAAFP

Abstract: Hurricanes Katrina and Rita produced the largest evacuation due to a natural disaster in United States history. Many people were evacuated or rescued from New Orleans and the Gulf Coast, resulting in a need for mass disaster shelters and medical care for months following the storms. The shelter healthcare system that was successfully developed in the Shreveport/Bossier City, Louisiana area was accomplished with little support from customary sources. This report is written after much discussion and inspection of community leaders involved: “on the ground” who organized and provided medical services to evacuees of south Louisiana. It is purpose to compile: “lessons learned” in preparation for the next disaster recovery effort that might affect this or any other region of our country.

Research Methodology

Within 24 Hours

Within a week

Within months +

Within a year +

Journals

International Journal of Remote Sensing

Vol. 26, No. 24, 20 December 2005, 5359–5360

Applications of Radarsat-1 synthetic aperture radar imagery to assess hurricane-related flooding of coastal Louisiana

LAWRENCE M. KIAGE††, NANCY D. WALKER‡‡, SHRISANTH BALASUBRAMANIAN†, ADELE BABIN† and JOHN BARRAS†

†Coastal Studies Institute, Earth Scan Laboratory, Louisiana State University, Howel Russell Geoscience Complex, Baton Rouge, LA 70803, USA
‡‡Department of Geography and Anthropology, Louisiana State University, Howel Russell Geoscience Complex, Baton Rouge, LA 70803, USA
††Department of Oceanography and Coastal Sciences, Howel Russell Geoscience Complex, Baton Rouge, LA 70803, USA
‡‡United States Department of Interior, United States Geological Survey, Baton Rouge, LA 70804, USA

(Rceived 24 October 2005; in final form 25 October 2005)

The Louisiana coast is subjected to hurricane impacts including flooding of human settlements, river channels and coastal marshes, and salt water intrusion. Information on the extent of flooding is often required quickly for emergency relief, repair of infrastructures, and production of flood risk maps. This study

BRIEF COMMUNICATIONS ARISING

Are there trends in hurricane destruction?

Since the record impact of Hurricane Katrina, attention has focused on understanding trends in hurricanes and their destructive potential. Emanuel1 reports a marked increase in the potential destructiveness of hurricanes based on identification of a trend in an accumulated annual index of power dissipation in the North Atlantic and western North Pacific since the 1970s. If hurricanes are indeed becoming more destructive over time, then this trend should manifest itself in more destruction. However, my analysis of a long-term data set of hurricane losses in the United States shows no upward trend once the data are normalized to remove the effects of societal changes.

Historical hurricane losses can be adjusted to a base year’s values through adjustments related to inflation, population and wealth3, events per year) of 9.3 billion, and an average per-storm loss in 1951–2004 for 46 storms (0.85 events per year) of $7.0 billion; this difference is not statistically significant. Adding Hurricane Katrina to this data set, even at the largest loss figures currently suggested, would not change the interpretation of these results.

These loss data indicate two possibilities with respect to Emanuel’s analysis.1 If the power-dissipation index metric is an accurate indicator of hurricane destructiveness, then the trend identified by Emanuel could be an artefact of the data and/or methods; Alternatively, the trend he identifies is an accurate reflection of trends in the real-world characteristics of storms, but the power-dissipation index is a weak indicator of hurricane destructiveness — which would call for the identification of other, perhaps more accurate, measuring metrics.

Roger A. Pielke, Jr
Center for Science and Technology Policy Research, University of Colorado, Campus Box 488, Boulder, Colorado 80309-0480, USA
e-mail: pielke@cires.colorado.edu

Information Cycle

First Hours

Within a year +

Within 24 Hours

Within months +

Within a week to a month
Information Cycle

Books

First Hours

Within a week to a month

Within months +

Within a year +
Information Cycle

- **Within 24 Hours**
- **Within a week to a month**
- **Within months +**
- **Within a year +**

Books, Documentaries
Information Cycle

Books
Documentaries
Anniversary Works

Within 24 Hours
Within a week
Within months +
Within a year +

The New York Times

View of a Hurricane, 5 Years On; [Web Log]
Information Cycle

Books
Documentaries
Anniversary Works
Encyclopedias

The New York Times

View of a Hurricane, 5 Years On; [Web Log]

Information Cycle

- First Hours
- Within a week to a month
- Within months +
- Within a year +
- Within 24 Hours
- Within a week to a month